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ABSTRACT: We show how the switching on of electron
transport through a system of two parallel quantum dots
embedded in a short quantum wire in a photon cavity can trigger
coupled Rabi and collective electron−photon oscillations. We
select the initial state of the system to be an eigenstate of the
closed system containing two Coulomb-interacting electrons
with possibly few photons of a single cavity mode. The many-
level quantum dots are described by a continuous potential. The
Coulomb interaction and the para- and diamagnetic electron−
photon interactions are treated by exact diagonalization in a
truncated Fock space. To identify the collective modes, the
results are compared for an open and a closed system with respect to the coupling to external electron reservoirs, or leads. We
demonstrate that the vacuum Rabi oscillations can be seen in transport quantities as the current in and out of the system.
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Fine-tuning of the electron−photon interaction has opened
up new possibilities in semiconductor physics. The

transport of electrons through quantum dots assisted by up
to four photons in the terahertz frequency range has been
observed,1 and double quantum dots have been used to detect
single photons from shot noise in electron transport through a
quantum point contact.2 The properties and control of atomic
or electronic systems in photonic cavities is a common theme
in the research effort of many teams working on various aspects
of quantum cavity electrodynamics and related fields.3−10 The
nonlocal single-photon transport properties of two sets of
double quantum dots within a photon cavity have recently been
modeled,11 and a pump−probe scheme for electron−photon
dynamics in a hybrid conductor−cavity system with one
electron reservoir was also investigated.12 Many tasks in
quantum information processing might be served by mixed
photon−electron circuits. To model such systems, we need to
combine methods and tools that have traditionally been used
and developed in the fields of time-dependent electron
transport and quantum optics. In this publication, we show
how time-dependent electron transport through a nanoscale
system embedded in a photon cavity could be used to detect
vacuum Rabi oscillations in it. To do so, we use a generalized
master equation (GME) formalism for time-dependent electron
transport that was initially developed for quantum optics
systems.13,14

■ THE CLOSED SYSTEM IN EQUILIBRIUM

We consider a 2D electron system lying in the xy plane (GaAs
parameters, κ = 12.4 and m* = 0.067me) that is subject to a
homogeneous external weak magnetic field in the z direction (B
= 0.1 T). The system represents a short quantum wire with
parabolic confinement in the y direction, with energy ℏΩ0 = 2.0
meV but hard walls in the x direction. Two shallow parallel
quantum dots are embedded in the wire as is illustrated in
Figure 1. The external magnetic field and the parabolic
confinement define the natural length scale aw = (ℏ/
(m*Ωw))

1/2, with Ωw = (Ω0
2 + ωc

2)1/2, where ωc = (eB/
(m*c)). The Coulomb interaction of the electrons in the
system is considered using configuration interaction in a
truncated Fock space. The 2D electron system is placed in a
photon cavity with one mode of energy EEM and linear
polarization in the x or y direction. For the electron−photon
interaction, we retain both the para- and the diamagnetic terms
without the rotating wave approximation, but consider the
wavelength much larger than the size of the electron
system.15,16 The two parts of the electron−photon interaction
are used because we consider the system both to be on- and off-
resonance.17 We begin by using the electron−photon coupling
strength gEM = 0.05 meV. Not all types of cavities may admit an
external perpendicular magnetic field. We keep it in the model
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in order to take proper care of the spin degree of freedom in
the numerical calculations and to track possible effects of the
coupling of the electron motion along or perpendicular to the
short quantum wire.
The energy spectrum of the closed system is displayed in

Figure 2a together with information about the electron, photon,
and spin content of the lowest eigenstates for a photon field
with y polarization and energy EEM chosen close to the
confinement frequency ℏΩ0. We obtain a vacuum Rabi splitting
for the two-electron state containing one photon, resulting in
the Rabi pair (| ̆21), | ̆22)) seen in Figure 2b. We denote by μ| )̆
the composite many-body electron−photon eigenstates.15,16

■ THE CLOSED SYSTEM OUT OF EQUILIBRIUM
We now consider a short classical electromagnetic pulse
perturbing the closed system. The time-evolution of the system
is calculated by direct integration of the Liouville−von
Neumann equation for the density matrix.18,19 We start the
time-evolution for the system in two different states, with the
cavity photons having either x or y polarization, and with the
excitation pulse with the same polarization as the photons. In
the x polarization case, we use the two-electron ground state
| ̆6). For the y polarization, we select the Rabi-split state with the
higher photon content (≳ 0.5). After the excitation pulse has
vanished, the occupation is constant and is seen in Figure 3a,b
for the two cases. The pulse is shown in the inset of Figure 3c
(red curve).
The former excitation (x polarization) gives a gapped

spectrum for which most transitions can be related to known
dipole-active many-body states.20 The latter excitation (y

polarization) is very close to a resonance in the system and
results in the activation of many transitions visible in Figure 3b.
More important is the fact that this type of low-frequency
excitation pulse not only causes the occupation of the other
Rabi-vacuum-split state, i.e., | ̆21) together with | ̆23), but also a
strong entanglement between the Rabi-vacuum components
(signaled by large off-diagonal elements in the density matrix).
The system is far from an eigenstate, and as displayed in Figure
4, it shows very strong pure Rabi oscillations in the mean
photon number (Figure 4b) that are even present in the
Fourier component of the expectation value of the center-of-
mass y coordinate (Figure 4a). If the photon energy is not in
resonance with the confinement energy, then the excitation
spectrum of the mean values of the center-of-mass coordinates
is generally simpler for a not-too-strong excitation. This case
was already accounted for in Figure 3a, where an x-polarized
photon field is not in resonance with the electrons, higher states
above the ground state are only slightly occupied, and no low
energy modes are excited.

■ THE OPEN SYSTEM
We have seen how an external electrical pulse can be used to
excite the system out of a many-body eigenstate with a constant
photon number into entangled states with an oscillating photon
number. If we increase the frequency of the excitation pulse,
then the two Rabi-split states get less entangled, and smaller

Figure 1. (a) Schema of the leads−wire−cavity system. The chemical
potentials are indicated for the leads as well as the photon mode for
the central system (wavy vertical arrows). (b) Potential landscape
defining the two parallel quantum dots in a short parabolically
confined quantum wire. The arrow (cyan) indicates the general
direction (x direction) of electron transport after the system has been
opened up. Effective magnetic length aw = 23.8 nm, ℏΩ0 = 2.0 meV,
and B = 0.1 T.

Figure 2. (a) Lowest part of the energy spectrum Eμ (squares, units of
meV) for the closed system vs state number μ. The photon content
⟨Nγ⟩ of the states is indicated with vertical red bars, the spin ⟨sz⟩ (units
of ℏ) of each state are indicated with green bars, and the electron
content ⟨Ne⟩ is indicated with blue bars. The photons are y-polarized
with energy EEM = 2.0 meV. The two horizontal lines (pink) indicate
the chemical potentials of the biased leads that are coupled to the
system to open it up to electrons, as discussed further in the text. (b)
The Rabi vacuum splitting of the two-electron states | ̆21) and | ̆22). The
photon content is indicated with red bars. The two-electron state | ̆23)
with vanishing photon content enters the Rabi-splitting regime and
participates in the transport. gEM = 0.05 meV.
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Rabi amplitude is observed. The question is thus what happens
if instead of applying an electrical pulse, we gently open up the

system for transport of electrons through it, and keep the
coupling to the leads constant after the initial switch-on? The
transport of electrons through a system in a photon cavity has
been reported by Delbecq et al.21 Can we then expect to see
Rabi oscillations? To accomplish this, we describe the coupling
of the system to two external parabolic semi-infinite leads with
a non-Markovian GME, selecting a time-dependent coupling
function shown in the inset of Figure 3c. The coupling function
has a time scale similar to that of the external electrical pulse.
The GME formalism with our spatially dependent coupling of
states in the leads and the system has been described
elsewhere.15,16 (Here, the lead-system coupling strength is 0.5
meV and the lead temperature T = 0.5 K.) The GME describes
the time-evolution of the reduced-density operator of the
central system under the influence of the external leads. It is
derived by projecting the Liouville−von Neumann equation for
the time evolution of the full-density operator for the system
and the leads on the central system by tracing out variables of
the leads. In addition to the unitary evolution of the reduced-
density operator caused by the Hamiltonian of the central
system including the coupling to the photons, the GME
contains a complicated dissipation term with memory effects
describing the tunneling of electrons between the central
system and the leads. In our calculations, the GME leads to a
coupled set of tens of thousands of integro-differential
equations with time convolution caused by the non-Markovian
memory effects.
The chemical potentials of the left (L) and right (R) leads, μL

= 1.4 meV and μR = 1.1 meV, respectively, are chosen to
include three two-electron and two one-electron states in the
bias window, as indicated in Figure 2a. Because of the geometry
of the system, the two-electron states have low coupling to the
leads, resulting from their charge densities being low in the
contact area of the central system. In the case of a y-polarized
photon field approximately in resonance with the y confine-
ment potential, we observe small oscillations in the mean
photon number seen in Figure 5a. The oscillations are small
because the GME formalism as applied here is only valid for
weak contacts to the leads. The frequency of the oscillations
coincides with the Rabi frequency observed in the closed
system and the Jaynes−Cummings model22 when the states | ̆6)
and | ̆22) (Figure 2a) are taken as the atomic states with our
electron−photon coupling strength gEM = 0.05 meV and
photon energy EEM = 2.0 meV.
We are here describing different ways to excite an electron−

photon system confined by a continuous potential. To describe
correctly the strong electron−photon interaction, we need a
large basis in the Fock space built as a tensor product of
Coulomb-interacting electron states and the eigenstates of the
photon operator. As a byproduct, we can see collective
oscillations emerging in the system opened up for transport,
even in the weak coupling limit. In Figure 5b, we see the mean
orbit of the center-of-mass of the two electrons for the two
linear polarizations of the photon field. In both cases, the
center-of-mass is shifted from the center of the system (x = y =
0) to the left as one of the electrons starts to seep slowly from
the system into the right lead, performing revolutions that are
synchronized with the oscillations of the photon number. We
see effects of the weak magnetic field and the dissipation of
energy to the leads. The occupation of the initial two-electron
state is getting less probable, whereas lower energy one-
electron states are gaining occupation probability. Figure 5b

Figure 3. For the closed system, (a) the occupation of states μ| )̆ for x
polarization and excitation in the x direction. (b) Occupation for y
polarization and excitation in the y direction. (c) Transient occupation
for y polarization and excitation in the y direction for EEM = 2.0 meV.
The inset shows the temporal part of the excitation pulse compared to
the switching function for the lead coupling. The initial state is the
lowest-energy two-electron Rabi-split state with photon content ≳0.5
for the y polarization but the two-electron ground state for the x
polarization.

Figure 4. Fourier spectra in case of the closed system for (a) the
center-of-mass coordinate ⟨y⟩ and (b) the mean photon number ⟨Nγ⟩
for the initial lowest-energy Rabi-split two-electron state with photon
content ≳0.5. gEM = 0.05 meV.
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shows how the off-resonance system (blue curve) shows a
simple spatially damped oscillation influenced by the magnetic
field. In case of the Rabi resonance (red curve), the oscillation
is almost entirely in the direction dictated by the electrical
component of the photon.
The energy of the Rabi splitting as a function of the coupling

constant gEM is compared for the open and the closed systems
in Figure 6. The splittings for the open and the closed system

agree within the accuracy of the numerical calculations. They
are a bit higher than the value known for the two-level Jaynes−
Cummings model ΔERabiJC = ((ℏωr

2) + δ2)1/2, with the detuning
δ = 7.44 μeV and the Rabi frequency ℏωr = 2gEM for the
vacuum Rabi oscillations. This can be expected for a multilevel
model.23

Because of the restriction of the GME formalism to weak
contacts, the effects of the Rabi oscillations on the current in
the leads is minor. However, if the system is initially excited by
an external electrical pulse before it is opened up for transport,

then the initial state for the transport would be a highly
entangled state of the Rabi-split states, and the current in the
leads would reflect that, as can be seen in Figure 7. The

oscillations in the current caused by the vacuum Rabi
oscillations decay with time as the occupation of the two-
electron Rabi-split pair of states get less probable as charge
enters and leaves the system and decoherence sets in.

■ DISCUSSION AND SUMMARY
Effort has been put into guaranteeing the accuracy of the results
presented here. The methods employed have been based on a
grid-free numerical approach in an appropriate basis. We have
used a so-called stepwise introduction of model complexities
with the necessary truncation introduced elsewhere.15 The
needed basis size was in the range of 120−6000.
We show that even a weak contact of the central system to

the external leads causes collective oscillations of the electrons
and the photons in the system. Opposite to what happens in
the closed system, the collective oscillations in the open system
can change their character as the state of the central system
evolves irreversibly in time. To describe the collective coupled
oscillations of the strong interacting photons and electrons, it is
necessary to resort to large bases of electron states and include
both the para- and the diamagnetic interactions.
In the closed system, we observe strong vacuum Rabi

oscillations in the photon content when the photon frequency
is close to the parabolic lateral confinement frequency and its
polarization is in the perpendicular direction (y direction). This
situation favors excitation by a low-frequency perpendicular
electrical pulse because the vacuum Rabi splitting of the two-
electron state is small. The excitation pulse then effectively puts
the system into an entangled state of the two Rabi-split states.
The vacuum Rabi oscillation is also seen in the open system

under the same initial conditions for the photon field, but its
amplitude is small because the contacts to the leads are not very
effective in forming an entangled state of the Rabi-split states.
This can be enhanced by first exciting the system by an external
electric pulse before it is opened up for electron transport. We
have neglected cavity loss in our model, which is expected to
increase because of the coupling of the central system to
external metallic leads; therefore, we restrict our calculation to
the transient time regime of less than 300 ps.
There are two main reasons for selecting a parallel double

quantum dot system here. First, they can capture states with
two-electrons that have a rich spectrum of collective oscillations

Figure 5. For the open system, (a) the mean photon number ⟨Nγ⟩ for
y polarization, and (b) the mean orbit of the center-of-mass of the
initial lowest-energy Rabi-split two-electron state for x polarization
(blue) and y polarization (red) with photon content ≳0.5 (y
polarization) and the lowest-energy two-electron one-photon state
(x polarization). EEM = 2.0 meV, gEM = 0.05 meV.

Figure 6. Energy of the Rabi splitting as found from the energy
spectrum (“Spectrum”), the Fourier analysis of the oscillations in the
mean photon number ⟨Nγ⟩ for the closed system (“⟨Nγ⟩-FT, closed”),
the open system (“⟨Nγ⟩-FT, open”), and the two-level Jaynes−
Cummings model (“JC”). B = 0.1 T, EEM = 2.0 meV.

Figure 7. For the open system, the left and right currents (black and
gold, respectively, left y axis) and the mean number of electrons (blue,
right y axis) in case of full entanglement for the Rabi-split states | ̆21)
and | ̆22) as initial states for a y-polarized photon field. EEM = 2.0 meV.
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that can be excited by the transport. Second, in order to
observe Rabi and collective oscillations, we need the system to
be weakly contacted to the leads for the initial state to be slowly
decaying. For this purpose, the two-electron states in parallel
dots are particularly convenient because their coupling to the
leads is highly tunable.24

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: vidar@hi.is.
*E-mail: cstang@nuu.edu.tw.
*E-mail: manoles@ru.is.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was financially supported by the Research Fund of
the University of Iceland and the Icelandic Instruments Fund.
We acknowledge also support from the computational facilities
of the Nordic High Performance Computing (NHPC), and the
Nordic network NANOCONTROL, project no. P-13053, and
the Ministry of Science and Technology, Taiwan through
contract no. MOST 103-2112-M-239-001-MY3.

■ REFERENCES
(1) Shibata, K.; Umeno, A.; Cha, K. M.; Hirakawa, K. Photon-
Assisted Tunneling through Self-Assembled InAs Quantum Dots in
the Terahertz Frequency Range. Phys. Rev. Lett. 2012, 109, 077401.
(2) Gustavsson, S.; Studer, M.; Leturcq, R.; Ihn, T.; Ensslin, K.;
Driscoll, D. C.; Gossard, A. C. Frequency-Selective Single-Photon
Detection Using a Double Quantum Dot. Phys. Rev. Lett. 2007, 99,
206804.
(3) Goy, P.; Raimond, J. M.; Gross, M.; Haroche, S. Observation of
Cavity-Enhanced Single-Atom Spontaneous Emission. Phys. Rev. Lett.
1983, 50, 1903−1906.
(4) Gallardo, E.; Martínez, L. J.; Nowak, A. K.; van der Meulen, H. P.;
Calleja, J. M.; Tejedor, C.; Prieto, I.; Granados, D.; Taboada, A. G.;
García, J. M.; et al. Emission polarization control in semiconductor
quantum dots coupled to a photonic crystal microcavity. Opt. Express
2010, 18, 13301−13308.
(5) Frey, T.; Leek, P. J.; Beck, M.; Blais, A.; Ihn, T.; Ensslin, K.;
Wallraff, A. Dipole Coupling of a Double Quantum Dot to a
Microwave Resonator. Phys. Rev. Lett. 2012, 108, 046807.
(6) Petersson, K. D.; McFaul, L. W.; Schroer, M. D.; Jung, M.;
Taylor, J. M.; Houck, A. A.; Petta, J. R. Circuit quantum
electrodynamics with a spin qubit. Nature 2012, 380−383.
(7) Maragkou, M.; Nowak, A. K.; Gallardo, E.; van der Meulen, H. P.;
Prieto, I.; Martinez, L. J.; Postigo, P. A.; Calleja, J. M. Controlling the
properties of single photon emitters via the Purcell effect. Phys. Rev. B
2012, 86, 085316.
(8) Carmele, A.; Kabuss, J.; Schulze, F.; Reitzenstein, S.; Knorr, A.
Single Photon Delayed Feedback: A Way to Stabilize Intrinsic
Quantum Cavity Electrodynamics. Phys. Rev. Lett. 2013, 110, 013601.
(9) Kyriienko, O.; Kavokin, A. V.; Shelykh, I. A. Superradiant
Terahertz Emission by Dipolaritons. Phys. Rev. Lett. 2013, 111,
176401.
(10) Alexeev, A. M.; Shelykh, I. A.; Portnoi, M. E. Aharonov-Bohm
quantum rings in high-Q microcavities. Phys. Rev. B 2013, 88, 085429.
(11) Bergenfeldt, C.; Samuelsson, P. Nonlocal transport properties of
nanoscale conductor−microwave cavity systems. Phys. Rev. B 2013, 87,
195427.
(12) van den Berg, T. L.; Bergenfeldt, C.; Samuelsson, P. Pump-
probe scheme for electron-photon dynamics in hybrid conductor-
cavity systems. Phys. Rev. B 2014, 90, 085416.
(13) Zwanzig, R. Ensemble method in the theory of irreversibility. J.
Chem. Phys. 1960, 33, 1338−1341.

(14) Nakajima, S. On Quantum Theory of Transport Phenomena;
Steady Diffusion. Prog. Theor. Phys. 1958, 20, 948−959.
(15) Gudmundsson, V.; Jonasson, O.; Arnold, T.; Tang, C.-S.; Goan,
H.-S.; Manolescu, A. Stepwise introduction of model complexity in a
generalized master equation approach to time-dependent transport.
Fortschr. Phys. 2013, 61, 305−316.
(16) Gudmundsson, V.; Jonasson, O.; Tang, C.-S.; Goan, H.-S.;
Manolescu, A. Time-dependent transport of electrons through a
photon cavity. Phys. Rev. B 2012, 85, 075306.
(17) Jonasson, O.; Tang, C.-S.; Goan, H.-S.; Manolescu, A.;
Gudmundsson, V. Quantum magneto-electrodynamics of electrons
embedded in a photon cavity. New J. Phys. 2012, 14, 013036.
(18) Gudmundsson, V.; Tang, C.-S.; Manolescu, A. Nonadiabatic
current generation in a finite width semiconductor ring. Phys. Rev. B
2003, 67, 161301(R).
(19) Gudmundsson, V.; Hauksson, S.; Johnsen, A.; Reinisch, G.;
Manolescu, A.; Besse, C.; Dujardin, G. Excitation of radial collective
modes in a quantum dot: Beyond linear response. Ann. Phys. (Berlin,
Ger.) 2014, 526, 235−248.
(20) Arnold, T.; Tang, C.-S.; Manolescu, A.; Gudmundsson, V.
Excitation spectra of a quantum ring embedded in a photon cavity. J.
Optics (Bristol, U.K.) 2015, 17, 015201.
(21) Delbecq, M.; Schmitt, V.; Parmentier, F.; Roch, N.; Viennot, J.;
Fev̀e, G.; Huard, B.; Mora, C.; Cottet, A.; Kontos, T. Coupling a
quantum dot, fermionic leads and a microwave cavity on-chip. Phys.
Rev. Lett. 2011, 107, 256804.
(22) Jaynes, E. T.; Cummings, F. W. Comparison of Quantum and
Semiclassical Radiation Theory with Application to the Beam Maser.
Proc. IEEE 1963, 51, 89−109.
(23) Alexanian, M.; Bose, S. K. Unitary transformation and the
dynamics of a three-level atom interacting with two quantized field
modes. Phys. Rev. A 1995, 52, 2218−2224.
(24) Gudmundsson, V.; Lin, Y.-Y.; Tang, C.-S.; Moldoveanu, V.;
Bardarson, J. H.; Manolescu, A. Transport through a quantum ring, a
dot and a barrier embedded in a nanowire in magnetic field. Phys. Rev.
B 2005, 71, 235302.

ACS Photonics Article

DOI: 10.1021/acsphotonics.5b00115
ACS Photonics 2015, 2, 930−934

934

mailto:vidar@hi.is
mailto:cstang@nuu.edu.tw
mailto:manoles@ru.is
http://dx.doi.org/10.1021/acsphotonics.5b00115

